Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34731091

RESUMO

SARS-CoV-2 promotes an imbalanced host response that underlies the development and severity of COVID-19. Infections with viruses are known to modulate transposable elements (TEs), which can exert downstream effects by modulating host gene expression, innate immune sensing, or activities encoded by their protein products. We investigated the impact of SARS-CoV-2 infection on TE expression using RNA-Seq data from cell lines and from primary patient samples. Using a bioinformatics tool, Telescope, we showed that SARS-CoV-2 infection led to upregulation or downregulation of TE transcripts, a subset of which differed from cells infected with SARS, Middle East respiratory syndrome coronavirus (MERS-CoV or MERS), influenza A virus (IAV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Differential expression of key retroelements specifically identified distinct virus families, such as Coronaviridae, with unique retroelement expression subdividing viral species. Analysis of ChIP-Seq data showed that TEs differentially expressed in SARS-CoV-2 infection were enriched for binding sites for transcription factors involved in immune responses and for pioneer transcription factors. In samples from patients with COVID-19, there was significant TE overexpression in bronchoalveolar lavage fluid and downregulation in PBMCs. Thus, although the host gene transcriptome is altered by infection with SARS-CoV-2, the retrotranscriptome may contain the most distinctive features of the cellular response to SARS-CoV-2 infection.


Assuntos
COVID-19/genética , Retrovirus Endógenos/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Células A549 , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional , Infecções por Coronavirus/genética , Elementos de DNA Transponíveis/genética , Regulação para Baixo , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Técnicas In Vitro , Vírus da Influenza A , Influenza Humana/genética , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Parainfluenza 3 Humana , RNA-Seq , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sinciciais Respiratórios , Infecções por Respirovirus/genética , Retroelementos/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/genética , Transcriptoma , Regulação para Cima
2.
Biomed Res Int ; 2021: 1807293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409100

RESUMO

Human Parainfluenza Virus Type 3 (HPIV3) is one of the main pathogens that cause acute lower respiratory tract infections in infants and young children. However, there are currently no effective antiviral drugs and vaccines. Herein, we found that a natural compound, curcumin, inhibits HPIV3 infection and has antiviral effects on entry and replication of the virus life cycle. Immunofluorescence and western blotting experiments revealed that curcumin disrupts F-actin and inhibits viral inclusion body (IB) formation, thus inhibiting virus replication. Curcumin can also downregulate cellular PI4KB and interrupt its colocalization in viral IBs. This study verified the antiviral ability of curcumin on HPIV3 infection and preliminarily elucidated its influence on viral replication, providing a theoretical basis for antiviral drug development of HPIV3 and other parainfluenza viruses.


Assuntos
Curcumina/farmacologia , Corpos de Inclusão Viral/metabolismo , Vírus da Parainfluenza 3 Humana/fisiologia , Infecções por Respirovirus/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Células A549 , Actinas/metabolismo , Animais , Cães , Regulação para Baixo , Redução da Medicação , Células HeLa , Humanos , Corpos de Inclusão Viral/efeitos dos fármacos , Corpos de Inclusão Viral/genética , Células Madin Darby de Rim Canino , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Infecções por Respirovirus/tratamento farmacológico , Infecções por Respirovirus/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
Vet Microbiol ; 259: 109129, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087675

RESUMO

Caprine parainfluenza virus type 3 (CPIV3) is one of the most important viral respiratory pathogens of goat. Accumulating evidence demonstrates that apoptosis is a cellular mechanism for the host response to pathogens, and it participates in regulating viral replication. However, there is little study on CPIV3-induced host cells apoptosis. In this study, primary goat tracheal epithelial (GTE) cells were established as a cellular model that is permissive to CPIV3 infection. Then, we showed that CPIV3 infection induced apoptosis in GTE cells, as determined by morphological changes, flow cytometry and TUNEL assay. Moreover, Caspase activity and the expression of pro-apoptotic genes further suggested that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. Mechanistically, the ability of CPIV3 to induce apoptosis was activated by N protein, and the viral protein increased CPIV3 replication through effecting apoptosis. Overall, our findings showed that GTE cells that will enable further analysis of CPIV3 infection and offers novel insights into the mechanisms of CPIV3-induced apoptosis in host cells.


Assuntos
Apoptose/genética , Proteínas do Nucleocapsídeo/genética , Vírus da Parainfluenza 3 Humana/química , Vírus da Parainfluenza 3 Humana/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/veterinária , Replicação Viral/genética , Animais , Células Cultivadas , Células Epiteliais/virologia , Doenças das Cabras/virologia , Cabras/virologia , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Parainfluenza 3 Humana/patogenicidade , Infecções por Respirovirus/virologia , Traqueia/citologia
4.
Am J Respir Cell Mol Biol ; 64(5): 536-546, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33233920

RESUMO

TOLLIP (Toll-interacting protein) is an intracellular adaptor protein with diverse actions throughout the body. In a context- and cell type-specific manner, TOLLIP can function as an inhibitor of inflammation and endoplasmic-reticulum stress, an activator of autophagy, or a critical regulator of intracellular vacuole trafficking. The distinct functions of this protein have been linked to innate immune responses and lung epithelial-cell apoptosis. TOLLIP genetic variants have been associated with a variety of chronic lung diseases, including idiopathic pulmonary fibrosis, asthma, and primary graft dysfunction after lung transplantation, and with infections, such as tuberculosis, Legionella pneumonia, and respiratory viruses. TOLLIP exists in a delicate homeostatic balance, with both positive and negative effects on the trajectory of pulmonary diseases. This translational review summarizes the genetic and molecular associations that link TOLLIP to the development and progression of noninfectious and infectious pulmonary diseases. We highlight current limitations of in vitro and in vivo models in assessing the role of TOLLIP in these conditions, and we describe future approaches that will enable a more nuanced exploration of the role of TOLLIP in pulmonary conditions. There has been a surge in recent research evaluating the role of this protein in human diseases, but critical mechanistic pathways require further exploration. By understanding its biologic functions in disease-specific contexts, we will be able to determine whether TOLLIP can be therapeutically modulated to treat pulmonary diseases.


Assuntos
Asma/genética , Rejeição de Enxerto/genética , Fibrose Pulmonar Idiopática/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Asma/imunologia , Asma/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Humanos , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/patologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Doença dos Legionários/genética , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Doença dos Legionários/patologia , Transplante de Pulmão , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , Infecções por Respirovirus/genética , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/patologia , Infecções por Respirovirus/virologia , Transdução de Sinais , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
5.
Front Immunol ; 11: 1575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983081

RESUMO

Caprine parainfluenza virus type 3 (CPIV3) is an emerging respiratory pathogen that affects the sheep and goat industry in China and possibly other countries around the world. Accumulating evidence suggests that microRNAs play important roles in regulating virus-host interactions and can suppress or facilitate viral replication. In this study, we showed that CPIV3 infection induced apoptosis in Madin-Darby bovine kidney (MDBK) cells, as determined by morphological changes and flow cytometry. Caspase activity and the expression of pro-apoptotic genes further indicated that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. We also demonstrated the involvement of bta-microRNA-98 (bta-miR-98) in regulating CPIV3-induced apoptosis. Bta-miR-98 was downregulated in MDBK cells infected with CPIV3. Overexpression of bta-miR-98 significantly decreased the activities of caspase-3, -8, and -9. Conversely, inhibition of bta-miR-98 had completely opposite effects. Furthermore, our data showed that bta-miR-98 markedly affected CPIV3 replication by regulating apoptosis. Importantly, we found that bta-miR-98 modulated CPIV3-induced apoptosis by targeting caspase-3, an effector of apoptosis. Collectively, our results may suggest that CPIV3 infection induced apoptosis and downregulated the levels of bta-miR-98, and this miRNA regulated viral replication through effected apoptosis. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.


Assuntos
Caspase 3/genética , MicroRNAs/genética , Vírus da Parainfluenza 3 Humana/fisiologia , Interferência de RNA , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Replicação Viral , Animais , Apoptose/genética , Biomarcadores , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Respirovirus/metabolismo , Receptor fas/metabolismo
6.
Dis Model Mech ; 13(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32461220

RESUMO

Mammalian organs consist of diverse, intermixed cell types that signal to each other via ligand-receptor interactions - an interactome - to ensure development, homeostasis and injury-repair. Dissecting such intercellular interactions is facilitated by rapidly growing single-cell RNA sequencing (scRNA-seq) data; however, existing computational methods are often not readily adaptable by bench scientists without advanced programming skills. Here, we describe a quantitative intuitive algorithm, coupled with an optimized experimental protocol, to construct and compare interactomes in control and Sendai virus-infected mouse lungs. A minimum of 90 cells per cell type compensates for the known gene dropout issue in scRNA-seq and achieves comparable sensitivity to bulk RNA sequencing. Cell lineage normalization after cell sorting allows cost-efficient representation of cell types of interest. A numeric representation of ligand-receptor interactions identifies, as outliers, known and potentially new interactions as well as changes upon viral infection. Our experimental and computational approaches can be generalized to other organs and human samples.


Assuntos
Perfilação da Expressão Gênica , Pulmão/virologia , RNA-Seq , Infecções por Respirovirus/virologia , Vírus Sendai/patogenicidade , Análise de Célula Única , Transcriptoma , Animais , Comunicação Celular , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Infecções por Respirovirus/genética , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/patologia , Transdução de Sinais
7.
PLoS One ; 14(9): e0222802, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31539400

RESUMO

Recent studies have begun to elucidate a role for E3 ubiquitin ligases as important mediators of the innate immune response. Our previous work defined a role for the ubiquitin ligase natural killer lytic-associated molecule (NKLAM/RNF19b) in mouse and human innate immunity. Here, we present novel data describing a role for NKLAM in regulating the immune response to Sendai virus (SeV), a murine model of paramyxoviral pneumonia. NKLAM expression was significantly upregulated by SeV infection. SeV-infected mice that are deficient in NKLAM demonstrated significantly less weight loss than wild type mice. In vivo, Sendai virus replication was attenuated in NKLAM-/- mice. Autophagic flux and the expression of autophagy markers LC3 and p62/SQSTM1 were also less in NKLAM-/- mice. Using flow cytometry, we observed less neutrophils and macrophages in the lungs of NKLAM-/- mice during SeV infection. Additionally, phosphorylation of STAT1 and NFκB p65 was lower in NKLAM-/- than wild type mice. The dysregulated phosphorylation profile of STAT1 and NFκB in NKLAM-/- mice correlated with decreased expression of numerous proinflammatory cytokines that are regulated by STAT1 and/or NFκB. The lack of NKLAM and the resulting attenuated immune response is favorable to NKLAM-/- mice receiving a low dose of SeV; however, at a high dose of virus, NKLAM-/- mice succumbed to the infection faster than wild type mice. In conclusion, our novel results indicate that NKLAM plays a role in regulating the production of pro-inflammatory cytokines during viral infection.


Assuntos
Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Proteínas de Membrana/deficiência , Pneumonia/metabolismo , Infecções por Respirovirus/metabolismo , Animais , Citocinas/genética , Humanos , Imunidade Inata/genética , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Pneumonia/genética , Pneumonia/virologia , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Vírus Sendai/fisiologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
8.
BMC Vet Res ; 15(1): 151, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101113

RESUMO

BACKGROUND: Caprine parainfluenza virus type 3 (CPIV3) is major pathogen of goat herds causing serious respiratory tract disease and economic losses to the goat industry in China. We analyzed the differential proteomics of CPIV3-infected Madin-Darby bovine kidney (MDBK) cells using quantitative iTRAQ coupled LC-MS/MS. In addition, four DEPs were validated by qRT-PCR and western blot analysis. RESULTS: Quantitative proteomics analysis revealed 163 differentially expressed proteins (DEPs) between CPIV3-infected and mock-infected groups (p-value < 0.05 and fold change > 1.2), among which 91 were down-regulated and 72 were up-regulated. Gene ontology (GO) analysis showed that these DEPs were involved in molecular functions, cellular components and biological processes. Biological functions in which the DEPs were involved in included diseases, genetic information processing, metabolism, environmental information processing, cellular processes, and organismal systems. STRING analysis revealed that four heat shock proteins (HSPs) included HSPA5, HSPA1B, HSP90B1 and HSPA6 may be associated with proliferation of CPIV3 in MDBK cells. qRT-PCR and western blot analysis showed that the selected HSPs were identical to the quantitative proteomics data. CONCLUSION: To our knowledge, this is the first report of the proteomic changes in MDBK cells after CPIV3 infection.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteômica , Infecções por Respirovirus/veterinária , Respirovirus/fisiologia , Animais , Western Blotting , Bovinos , Linhagem Celular , Cromatografia Líquida , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Rim/virologia , Reação em Cadeia da Polimerase em Tempo Real , Respirovirus/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/metabolismo , Espectrometria de Massas em Tandem , Replicação Viral/fisiologia
9.
J Immunol ; 202(8): 2332-2347, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30804041

RESUMO

Epithelial barrier cells are proposed to be critical for host defense, and airway epithelial cell capacity for IFN signal transduction is presumed to protect against respiratory viral infection. However, it has been difficult to fully test these concepts given the absence of tools to analyze IFN signaling specific to airway epithelial cells in vivo. To address these issues, we generated a new line of transgenic mice with Cre-driver genes (Foxj1 and Scgb1a1) for a floxed-Stat1 allele (designated Foxj1-Scgb1a1-Cre-Stat1f/f mice) to target the master IFN signal regulator STAT1 in airway epithelial cells and tested these mice for control of infection because of mouse parainfluenza (Sendai) virus and human enterovirus D68 (EV-D68). Indeed, both types of infections showed increases in viral titers and severity of acute illness in Foxj1-Scgb1a1-Cre-Stat1f/f mice and conventional Stat1-/- mice compared with wild-type mice. In concert, the chronic lung disease that develops after Sendai virus infection was also increased in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1-/ - mice, marked by airway and adjacent parenchymal immune cell infiltration and mucus production for at least 7 wk postinfection. Unexpectedly, relatively mild EV-D68 infection also progressed to chronic lung disease in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1 -/- mice but was limited (like viral replication) to airways. The results thereby provide proof-of-concept for a critical role of barrier epithelial cells in protection from acute illness and chronic disease after viral infection and suggest a specific role for airway epithelial cells given the limitation of EV-D68 replication and acute and chronic manifestations of disease primarily to airway tissue.


Assuntos
Células Epiteliais/imunologia , Pneumopatias/imunologia , Infecções por Respirovirus/imunologia , Fator de Transcrição STAT1/imunologia , Vírus Sendai/imunologia , Animais , Doença Crônica , Células Epiteliais/virologia , Pneumopatias/genética , Pneumopatias/virologia , Camundongos , Camundongos Knockout , Infecções por Respirovirus/genética , Fator de Transcrição STAT1/genética
10.
Braz J Microbiol ; 50(1): 13-22, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30637656

RESUMO

Sendai virus (SeV) has been used as a model strain to reveal molecular features of paramyxovirus biology. In this study, we comprehensively analyzed the gene profiling of murine macrophages and airway epithelial cells in response to SeV using gene expression data. The significantly differentially expressed genes (DEGs) were screened by GEO2R. Gene ontology (GO) and pathway enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) map of DEGs was constructed by STRING. The modules of PPI network are produced by molecular complex detection (MCODE) plug-in of Cytoscape. In total, 241 up- and 83 downregulated DEGs were identified in airway epithelial cells while 130 up- and 148 downregulated in macrophage. Particularly, Tmem119 and Colla2 are significantly downregulated in airway epithelial cells and macrophages, respectively. Functional enrichment analysis showed that upregulated DEGs are clustered in innate immunity and inflammatory response in both cell types, whereas downregulated DEGs are involved in host metabolic pathway in airway epithelial cells. PI3K-AKT signaling pathway is downregulated in macrophages. PPI network analysis indicated that some high degree of nodes exist in both cell types, such as Stat1, Tnf, and Cxcl10. In conclusion, SeV infection can induce different host cell responses in airway epithelial cells and macrophages.


Assuntos
Infecções por Respirovirus/genética , Vírus Sendai/fisiologia , Animais , Bases de Dados Genéticas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Vírus Sendai/genética
11.
Sci Rep ; 8(1): 16815, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429577

RESUMO

Innate antiviral immune responses are driven by virus-induced changes in host gene expression. While much research on antiviral effectors has focused on virus-inducible mRNAs, recent genome-wide analyses have identified hundreds of novel target sites for virus-inducible transcription factors and RNA polymerase. These sites are beyond the known antiviral gene repertoire and their contribution to innate immune responses is largely unknown. In this study, RNA-sequencing of mock-infected and Sendai virus-infected cells was performed to characterize the virus-inducible transcriptome and identify novel virus-inducible RNAs (nviRNAs). Virus-inducible transcription was observed throughout the genome resulting in expression of 1755 previously RefSeq-annotated RNAs and 1545 nviRNAs. The previously-annotated RNAs primarily consist of protein-coding mRNAs, including several well-known antiviral mRNAs that had low sequence conservation but were highly virus-inducible. The previously-unannotated nviRNAs were mostly noncoding RNAs with poor sequence conservation. Independent analyses of nviRNAs based on infection with Sendai virus, influenza virus, and herpes simplex virus 1, or direct stimulation with IFNα revealed a range of expression patterns in various human cell lines. These phylogenetic and expression analyses suggest that many of the nviRNAs share the high inducibility and low sequence conservation characteristic of well-known primary antiviral effectors and may represent dynamically evolving antiviral factors.


Assuntos
Imunidade Inata/genética , RNA/metabolismo , Infecções por Respirovirus/genética , Linhagem Celular , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus Sendai , Ativação Transcricional , Transcriptoma
12.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021903

RESUMO

Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1ß (IL-1ß) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1ß maturation and secretion. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize inflammasome pathways. Here we report that V gene knockout Sendai virus [SeV V(-)] induced markedly greater amounts of IL-1ß than wild-type SeV in infected THP1 macrophages. Deficiency of NLRP3 in cells inhibited SeV V(-)-induced IL-1ß secretion, indicating an essential role for NLRP3 in SeV V(-)-induced IL-1ß activation. Moreover, SeV V protein inhibited the assembly of NLRP3 inflammasomes, including NLRP3-dependent ASC oligomerization, NLRP3-ASC association, NLRP3 self-oligomerization, and intermolecular interactions between NLRP3 molecules. Furthermore, a high correlation between the NLRP3-binding capacity of V protein and the ability to block inflammasome complex assembly was observed. Therefore, SeV V protein likely inhibits NLRP3 self-oligomerization by interacting with NLRP3 and inhibiting subsequent recruitment of ASC to block NLRP3-dependent ASC oligomerization, in turn blocking full activation of the NLRP3 inflammasome and thus blocking IL-1ß secretion. Notably, the inhibitory action of SeV V protein on NLRP3 inflammasome activation is shared by other paramyxovirus V proteins, such as Nipah virus and human parainfluenza virus type 2. We thus reveal a mechanism by which paramyxovirus inhibits inflammatory responses by inhibiting NLRP3 inflammasome complex assembly and IL-1ß activation.IMPORTANCE The present study demonstrates that the V protein of SeV, Nipah virus, and human parainfluenza virus type 2 interacts with NLRP3 to inhibit NLRP3 inflammasome activation, potentially suggesting a novel strategy by which viruses evade the host innate immune response. As all members of the Paramyxovirinae subfamily carry similar V genes, this new finding may also lead to identification of novel therapeutic targets for paramyxovirus infection and related diseases.


Assuntos
Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/metabolismo , Proteínas Virais/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Células HEK293 , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Macrófagos/patologia , Macrófagos/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Multimerização Proteica/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/patologia , Vírus Sendai/genética , Células THP-1 , Proteínas Virais/genética
13.
FEBS Lett ; 592(14): 2444-2457, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29931672

RESUMO

Parainfluenza virus infection is a common respiratory illness in children. Although lncRNAs are novel regulators of virus-induced innate immunity, a systemic attempt to characterize the differential expression of lncRNAs upon parainfluenza virus infection is lacking. In this report, we identify 207 lncRNAs and 166 mRNAs differentially expressed in SeV-infected HEK293T cells by microarray. The functional annotation analysis reveals that differentially regulated transcripts are predominantly involved in the host antiviral response pathway. The lncRNAs with the potential to regulate SeV-induced antiviral response are identified by building the lncRNA-mRNA coexpression network. Furthermore, silencing lncRNA ENST00000565297 results in reduced type I IFN signaling upon SeV infection. These catalogs may facilitate future analysis of the functions of lncRNAs in innate immunity and related diseases.


Assuntos
Imunidade Inata/genética , Infecções por Paramyxoviridae/genética , RNA Longo não Codificante/fisiologia , Criança , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Paramyxoviridae/imunologia , RNA Longo não Codificante/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Transcriptoma
14.
Virus Genes ; 54(4): 514-526, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948782

RESUMO

Viral infection triggers the innate antiviral immune response that rapidly produces type I interferons in most cell types to combat viruses invading. Upon viral infection, the cytoplasmic RNA sensors RIG-I/MDA5 recognize viral RNA, and then RIG-I/MDA5 is transported to mitochondria interacting with VISA through the CARD domain. From there, VISA recruits downstream antiviral signaling pathways molecules, such as TRAFs and TBK1. Eventually, IRF3 is phosphorylated and type I IFNs are induced to fight as the first line of defense against viruses. However, it remains unclear how VISA acts as a scaffold to assemble the signalosome in RIG-I-mediated antiviral signaling. Here, we demonstrated Sec13 as a novel component that was involved in VISA-mediated antiviral signaling pathway. The co-immunoprecipitation assays showed that Sec13 specifically interacts with VISA. Overexpression of Sec13 increases VISA's aggregation and ubiquitination and significantly enhances the phosphorylation and dimerization of IRF3, facilitating the IFN-ß production. Conversely, the knockdown of Sec13 attenuates Sendai virus-induced and VISA-mediated IRF3 activation and the production of IFNß, thus weakens antiviral immune activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Resistência à Doença , Interações Hospedeiro-Patógeno , Transdução de Sinais , Viroses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Linhagem Celular , Resistência à Doença/genética , Resistência à Doença/imunologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferon beta/biossíntese , Agregados Proteicos , Ligação Proteica , Receptores de Reconhecimento de Padrão/metabolismo , Infecções por Respirovirus/genética , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Vírus Sendai/fisiologia , Ubiquitinação , Viroses/genética , Viroses/imunologia , Viroses/virologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-29651410

RESUMO

Caprine parainfluenza virus type 3 (CPIV3) is a newly emerging pathogenic respiratory agent infecting both young and adult goats, and it was identified in eastern China in 2013. Cellular microRNAs (miRNAs) have been reported to be important modulators of the intricate virus-host interactions. In order to elucidate the role of miRNAs in madin-darby bovine kidney (MDBK) cells during CPIV3 infection. In this study, we performed high-throughput sequencing technology to analyze small RNA libraries in CPIV3-infected and mock-infected MDBK cells. The results showed that a total of 249 known and 152 novel candidate miRNAs were differentially expressed in MDBK cells after CPIV3 infection, and 22,981 and 22,572 target genes were predicted, respectively. In addition, RT-qPCR assay was used to further confirm the expression patterns of 13 of these differentially expressed miRNAs and their mRNA targets. Functional annotation analysis showed these up- and downregulated target genes were mainly involved in MAPK signaling pathway, Jak-STAT signaling pathway, Toll-like receptor signaling pathway, p53 signaling pathway, focal adhesion, NF-kappa B signaling pathway, and apoptosis, et al. To our knowledge, this is the first report of the comparative expression of miRNAs in MDBK cells after CPIV3 infection. Our finding provides information concerning miRNAs expression profile in response to CPIV3 infection, and offers clues for identifying potential candidates for antiviral therapies against CPIV3.


Assuntos
Doenças dos Bovinos/genética , Rim/metabolismo , MicroRNAs/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/veterinária , Respirovirus/fisiologia , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/virologia , Linhagem Celular , Perfilação da Expressão Gênica , Rim/virologia , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Respirovirus/genética , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia
16.
FASEB J ; 32(10): 5238-5249, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29688809

RESUMO

Ubiquitination and deubiquitination are important post-translational regulatory mechanisms responsible for fine tuning the antiviral signaling. In this study, we identified a deubiquitinase, the ubiquitin-specific peptidase 7/herpes virus associated ubiquitin-specific protease (USP7/HAUSP) as an important negative modulator of virus-induced signaling. Overexpression of USP7 suppressed Sendai virus and polyinosinic-polycytidylic acid and poly(deoxyadenylic-deoxythymidylic)-induced ISRE and IFN-ß activation, and enhanced virus replication. Knockdown or knockout of endogenous USP7 expression had the opposite effect. Coimmunoprecipitation assays showed that USP7 physically interacted with tripartite motif (TRIM)27. This interaction was enhanced after SeV infection. In addition, TNF receptor-associated factor family member-associated NF-kappa-B-binding kinase (TBK)-1 was pulled down in the TRIM27-USP7 complex. Overexpression of USP7 promoted the ubiquitination and degradation of TBK1 through promoting the stability of TRIM27. Knockout of endogenous USP7 led to enhanced TRIM27 degradation and reduced TBK1 ubiquitination and degradation, resulting in enhanced type I IFN signaling. Our findings suggest that USP7 acts as a negative regulator in antiviral signaling by stabilizing TRIM27 and promoting the degradation of TBK1.-Cai, J., Chen, H.-Y., Peng, S.-J., Meng, J.-L., Wang, Y., Zhou, Y., Qian, X.-P., Sun, X.-Y., Pang, X.-W., Zhang, Y., Zhang, J. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interferon Tipo I/metabolismo , Proteínas Nucleares/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/metabolismo , Transdução de Sinais , Peptidase 7 Específica de Ubiquitina/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/genética , Proteínas Nucleares/genética , Proteólise , Infecções por Respirovirus/genética , Vírus Sendai/genética , Peptidase 7 Específica de Ubiquitina/genética , Ubiquitinação
17.
Infect Genet Evol ; 57: 75-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128518

RESUMO

Sendai virus (SeV) is one of the most important pathogens in the specific-pathogen free rodents. It is known that there are some inbred mouse strains susceptible or resistant to SeV infection. The C57BL/6 (B6) and DBA/2 (D2) mice are representative of the resistant and susceptible strains, respectively. Previous study with the quantitative trait locus (QTL) analysis identified three QTLs responsible for resistance or susceptibility to SeV infection on different chromosomes and indicated that resistance or susceptibility to SeV infection was almost predicted by genotypes of these three QTLs. In this paper, to verify the above hypothesis, congenic lines were generated as follows; B6-congenic lines carrying one of the D2 alleles of three QTLs and combination of these three QTLs, and D2-congenic lines carrying single or combination of B6 alleles of three QTLs. All these congenic lines were then challenged with SeV infection. D2 congenic lines introgressed single or combination of B6 alleles of QTLs changed to resistance to SeV infection. Especially, a D2 triple-congenic line became resistant as similar level to B6-parental strain. However, B6-congenic lines introgressed single or combination of D2 alleles of QTLs all remained to be resistant to SeV infection. Both IL-6 and TNF-α in broncho-alveolar lavage fluid of D2 triple-congenic line were decreased to the similar level of B6 mice, suggesting that this is a part of factors that D2 triple-congenic line became resistant to the similar level of B6 mice. Data obtained from these congenic mice verified that three QTLs identified previously were indeed responsible for the resistance/susceptibility to SeV infection in B6 and D2 mice.


Assuntos
Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Locos de Características Quantitativas , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Vírus Sendai/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Genótipo , Camundongos , Camundongos Congênicos , Repetições de Microssatélites , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/mortalidade , Vírus Sendai/patogenicidade , Taxa de Sobrevida
18.
Sci Rep ; 7(1): 17388, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234123

RESUMO

The host antiviral response involves the induction of interferons and proinflammatory cytokines, but also the activation of cell death pathways, including apoptosis, to limit viral replication and spreading. This host defense is strictly regulated to eliminate the infection while limiting tissue damage that is associated with virus pathogenesis. Post-translational modifications, most notably phosphorylation, are key regulators of the antiviral defense implying an important role of protein phosphatases. Here, we investigated the role of the dual-specificity phosphatase 1 (DUSP1) in the host defense against human respiratory syncytial virus (RSV), a pathogenic virus of the Pneumoviridae family, and Sendai virus (SeV), a model virus being developed as a vector for anti-RSV vaccine. We found that DUSP1 is upregulated before being subjected to proteasomal degradation. DUSP1 does not inhibit the antiviral response, but negatively regulates virus-induced JNK/p38 MAPK phosphorylation. Interaction with the JNK-interacting protein 1 scaffold protein prevents dephosphorylation of JNK by DUSP1, likely explaining that AP-1 activation and downstream cytokine production are protected from DUSP1 inhibition. Importantly, DUSP1 promotes SeV-induced apoptosis and suppresses cell migration in RSV-infected cells. Collectively, our data unveils a previously unrecognized selective role of DUSP1 in the regulation of tissue damage and repair during infections by RSV and SeV.


Assuntos
Apoptose , Movimento Celular , Fosfatase 1 de Especificidade Dupla/metabolismo , Sistema de Sinalização das MAP Quinases , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Respirovirus/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Regulação da Expressão Gênica , Humanos , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano , Infecções por Respirovirus/genética , Vírus Sendai
19.
Sci Rep ; 7(1): 107, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273895

RESUMO

Activation of the innate immune response triggered by dsRNA viruses occurs through the assembly of the Mitochondrial Anti-Viral Signaling (MAVS) complex. Upon recognition of viral dsRNA, the cytosolic receptor RIG-I is activated and recruited to MAVS to activate the immune signaling response. We here demonstrate a strict requirement for a mitochondrial anchored protein ligase, MAPL (also called MUL1) in the signaling events that drive the transcriptional activation of antiviral genes downstream of Sendai virus infection, both in vivo and in vitro. A biotin environment scan of MAPL interacting polypeptides identified a series of proteins specific to Sendai virus infection; including RIG-I, IFIT1, IFIT2, HERC5 and others. Upon infection, RIG-I is SUMOylated in a MAPL-dependent manner, a conjugation step that is required for its activation. Consistent with this, MAPL was not required for signaling downstream of a constitutively activated form of RIG-I. These data highlight a critical role for MAPL and mitochondrial SUMOylation in the early steps of antiviral signaling.


Assuntos
Imunidade Inata , Receptores do Ácido Retinoico/metabolismo , Infecções por Respirovirus/genética , Vírus Sendai/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mapeamento de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA , Receptores do Ácido Retinoico/genética , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Transdução de Sinais , Sumoilação , Ativação Transcricional
20.
J Exp Med ; 213(13): 2897-2911, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27879287

RESUMO

How tissue-specific anatomical distribution and phenotypic specialization are linked to protective efficacy of memory T cells against reinfection is unclear. Here, we show that lung environmental cues program recently recruited central-like memory cells with migratory potentials for their tissue-specific functions during lethal respiratory virus infection. After entering the lung, some central-like cells retain their original CD27hiCXCR3hi phenotype, enabling them to localize near the infected bronchiolar epithelium and airway lumen to function as the first line of defense against pathogen encounter. Others, in response to local cytokine triggers, undergo a secondary program of differentiation that leads to the loss of CXCR3, migration arrest, and clustering within peribronchoarterial areas and in interalveolar septa. Here, the immune system adapts its response to prevent systemic viral dissemination and mortality. These results reveal the striking and unexpected spatial organization of central- versus effector-like memory cells within the lung and how cooperation between these two subsets contributes to host defense.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Alvéolos Pulmonares/imunologia , Infecções Respiratórias/imunologia , Infecções por Respirovirus/imunologia , Respirovirus/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Feminino , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Infecções Respiratórias/genética , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Infecções por Respirovirus/genética , Infecções por Respirovirus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...